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Abstract- In Part I of this two-part paper. the scattering of SH waves by a rigid cylindrical inclusion
partially debonded from its surrounding matrix is investigated by using the wave function expansion
method and singular integral equation technique. The debonding regions are modeled as multiple
arc-shaped interface cracks with non-contacting faces. Expressing the scattered fields as the wave
function expansions with unknown coefficients and considering the mixed boundary conditions, we
reduce the problem to a set of simultaneous dual series equations. Then dislocation density functions
are introduced as unknowns to transform these dual series equations to a set of singular integral
equations of the first type which can be easily solved numerically by using the quadrature method
of Erdogan and Gupta [Int. J. Solids Structures 7, 1089-1107 (1972)]. The solution is valid for
arbitrary values of KTOro (where K TO is the wave number and ro the inclusion radius) and arbitrary
numbers and sizes of the debonds. Explicit solutions are obtained in two limiting situations: (i) the
long wavelength limit (KTOrO« I). In this case, the solution reduces to the quasistatic solution; (ii)
the small debond limit with Kroro = 0(1). This means the wavelength greatly exceeds the debond
size and the solution is identical to that of a fiat interface crack between a rigid half space and an
elastic one subjected to static loading at infinity. If the debond is small and KTOr O » 1, the solution
will give the results of a fiat interface crack subjected to an incident SH wave. Finally, the numerical
results of the dynamic stress intensity factors, the rigid body translations of the inclusion and the
scattering cross-sections are presented for an inclusion with one or two debonds. The phenomenon
of low frequency resonance discovered by Yang and Norris [1. Mech. Phys. Solids 39, 273-294
(1991)] for an elastic inclusion with one debond is shown and its dependence upon the various
parameters is discussed. The solution of this problem is relevant to ultrasonic nondestructive
detection of debonding and is expected to have applications to the question of how dynamic loading
can lead to growth of debonds [Norris and Yang. Mech. Mater. 11, 163-175 (1991 )]. Copyright 'I::
1996 Elsevier Science Ltd.

I. INTRODUCTION

The scattering of elastic waves by inclusion in an elastic medium has been a topic of
interest to many researchers because of its practical importance in earthquake engineering,
nondestructive evaluation, etc. In most published literature, the inclusion was assumed to
be perfectly bonded with the matrix, i.e. the interface is completely welded so that the
tractions and displacements are continuous across the interface. However, this is not always
true in practical cases. Partial debonding usually occurs at the interface, which may result
in catastrophic failure of structures. The nondestructive detection of debonding and the
forecast of possible growth of debonds under dynamic loading are of importance to
engineers. Thus, the dynamic analysis of a partially debonded inclusion subjected to elastic
waves received considerable attention in recent years.

Parton and Kudryavtsev (1975) first attacked the problem of interaction of SH waves
with a fixed rigid cylindrical inclusion with one deband at the interface. They treated the
debond as an interface crack and obtained the dynamic stress intensity factor. The method
they used is very complicated and no more problems have been solved by this method since
then, except Belyaev (1985) who considered a hollow elastic cylindrical inclusion. Coussy
(1982, 1983) dealt with the problems of SH wave and P wave scattering from an elastic
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cylindrical inclusion with an interface crack by the use of a perturbation method. She
obtained closed form far-field solutions (i.e. the scattering cross-sections) which are valid
only in the long wavelength limit. Recently, the same problem (SH wave incidence) was
solved by Yang and Norris (1991) by reducing the problem to an integral equation in the
crack opening displacement (COD) of the debond. The numerical results of the dynamic
stress intensity factors and the scattering cross-sections exhibit a phenomenon of low
frequency resonance which was not predicted by the quasistatic theory (Coussy, 1982,
1983). Later, they reconsidered the same problem by formulating the problem in terms of
the unknown stress along the bonding region (Norris and Yang, 1991b). An asymptotic
solution for a very large debond was derived, which successfully explains the low frequency
resonance. This approach was also applied to the problem of the incident P wave by
ignoring the oscillatory behavior of the stresses near the crack tips (Yang and Norris, 1992).
Indeed, it is very difficult to deal with the problem including such oscillatory behavior by
using this method.

It is worthwhile mentioning that some other methods have also been used to solve
similar problems. Kitahara et al. (1989) considered the scattering problem from a spherical
inclusion by boundary element method (BEM). In their work the interface is modeled as a
distribution of springs and the case of a partial debonding is included by setting the spring
constants to zero over the debonding region. Zhong and Lin (1992) applied the BEM to
the scattering problem for anisotropic medium and considered the scattering of elastic
waves by a partially debonded inclusion as a special example. The BEM is a powerful
technique but cannot go to very high frequencies in practice. The null field approach has
been used by Bostrom and Olsson (1987) and Olsson and Bostrom (1989) to study the
scattering problems of non-planar cracks which may be viewed as a special case of interface
cracks when the inclusion and matrix are made of the same material.

In this series of papers, we reconsider the scattering problem from a partially debonded
inclusion by a different approach. The analysis is limited to a rigid inclusion but allows for
multiple debonding regions which are modeled as multiple interface cracks with non­
contacting faces. We reduce the problem to a set of dual series equations which is then
converted to a set of singular integral equations in terms of the dislocation density functions.
The singular integral equation technique has many advantages in solving the crack prob­
lems, especially the interface crack problems, since the derived singular integral equation
describes the stress singularity ofcrack tips directly and its solution (analytical or numerical)
is fully developed. In fact, this technique has been widely and successfully used in both
static and dynamic fiat interface crack problems [e.g. Erdogan and Gupta (1971), Yang
and Bogy (1985)]. In Part I of this two-part paper we apply this approach to the scattering
of SH waves. We not only obtain the numerical results but also derive the explicit solutions
in two limiting cases: the long wavelength limit and the small debond limit. These results
agree very well with those of Yang and Norris (1991) and Norris and Yang (1991 b) when
only one debond exists at the interface. Therefore the present method is proved to be
successful and will be extended to the scattering of P and SV waves in Part II, where the
oscillatory behavior we have mentioned before will be taken into account.

2. DESCRIPTION OF THE PROBLEM

Consider the problem shown in Fig. 1. A rigid cylindrical inclusion with radius ro and
mass density PI is partially debonded from its surrounding elastic matrix. The debonds are
modeled as n interface cracks. Use cylindrical coordinates (r, 8, z) (- n ~ 8 ~ n), and let
the 8 coordinates of the kth crack tips be ak and bk (k = I-n). All motion is time harmonic
with frequency w, and the term e- iw1 will be omitted for simplicity.

The incident SH wave propagates in the 80-direction with the form

(I)

where K TO = w/CTO is the wavenumber, C TO = 5o/Po is the shear wave velocity, 110 and Po
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x

Fig. 1. A SH wave incident on a rigid cylindrical inclusion partially debonded from elastic matrix.

are, respectively, shear modulus and mass density of the matrix and A is amplitude. The
total out-of-plane displacement in the matrix may be decomposed as

(2)

where WbO) is the scattered field that would be present if the inclusion were perfectly bonded
(Pao and Mow, 1973), while Wbl

) is the additional scattered field generated by the debonds,
which satisfies the following Helmholtz equation (Pao and Mow, 1973)

(3)

where

By the use of the wave function expansion method (Pao and Mow, 1972), Wb l
) can be

written as

x

wbli (r,8) = I AmH),~)(KTOr) e- im8

m= -00

(4)

where H~) ( ) are the Hankel functions of the first kind, and Am are unknown coefficients.
The corresponding stress component r~;6 is

oc

I AmH;,~)' (KTOr) e- imO (5)

For a movable rigid inclusion, we should also consider the motion of the inclusion.
Under the action of SH waves, the inclusion will translate as a rigid body with its harmonic
anti-plane motion WI e- iwt

. Decompose WI as

(6)

where wIO) is the amplitude of the rigid body translation of a perfectly bonded inclusion
(Pao and Mow, 1973), and Wil) the amplitude of the additional translation due to debond­
ing, which is governed by following kinetic equation
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(7)

Substituting egn (5) into egn (7) yields

where P = PO/PI and A o is unknown.
The interface condition for the displacements may be written as

for a fixed rigid inclusion, or

(8)

(9)

(10)

for a movable rigid inclusion. dW in egns (9) and (10) is the discontinuity of the displacement
across the interface, which can be expressed as

(II)

with dWk denoting the COD of the kth crack.
The total stress vanishes on the crack faces, that is

(12)

where we have denoted 'T(e) = 'T;~o(ro, e) +'T;~6(ro, e) which can be found in Pao and Mow
(1973).

So far we have reduced the problem to finding the solutions of wb l
) and W\I) or

Am(m = - 00-+ (0) satisfying the mixed boundary conditions (9)-(12).

3. DERIVATION AND SOLUTION OF THE SINGULAR INTEGRAL EQUATIONS

Expanding dw(e) defined by egn (II) in a series of e- imO

oc

dw(e) = L dWm e- imH

m= -XJ

where

we have

from egns (4) and (9) for a fixed rigid inclusion or

(13)

(14)

(15)
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(16)

from eqns (4), (8) and (10) for a movable rigid inclusion. In eqn (16), bam is Kronecker
delta. Comparing eqn (15) with eqn (16), we can see that when P = 0, eqn (14) reduces to
eqn (15). Thus the following analysis will be focused on a movable rigid inclusion and the
results for a fixed rigid inclusion can be obtained by setting p = O.

Substituting eqn (5) into eqn (12) and considering eqn (16), we have

ex)

J.1 0 K TO L. N(m)Awm e- im8 = -r(B), 8E(ak, bd
m= -00

with

On the bonding regions, Aw(B) = 0, which implies

oc

L AWm e- im8
= 0, B¢:(ak, bd

m= -00

(17)

(18)

(19)

Equations (17) and (19) are dual series equations of the problem. If we substitute eqn
(14) into eqn (17), we will have a set of integral equations in terms of the COD as Yang
and Norris (1991) derived for the case of an elastic inclusion with one debond. Here, instead
of doing so, we will transform eqns (17) and (19) to a set of singular integral equations. To
this end, we introduce the dislocation density function of the kth crack

(20)

and denote

It can then be shown that Aw(B) may be expressed as

f
o

Aw(8) ='0 -R rp(O d(

which when substituted into eqn (14) yields

(21)

(22)

(23a)

(23b)

where we have used by-part integration. The reason for the appearance of (a,+b,)/2 in eqn
(23a) is that when <P1(8) is symmetric about 8 = (a,+ b,)/2, Mr'o = O. Substituting eqns
(23a,b) into eqn (17), we obtain the integral equations
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(24)

(25a,b)

The Hankel functions H}>~) (z) have following useful properties (Abramowitz and
Stegun, 1965)

Therefore, we have

M(m) :::::; - sgn(m),uo +O(m- Z), m -> ± CD.

Assuming

P(C a) = ~ {M(O) +2i I [M(m) + ,110] sin me, - a)}
2n m~l

and using the following relation

00 .. (Y a)I sgn(m) eml;~II) = icot ~ ,
Iml=1 2

(26a)

(26b)

(27)

(28)

(29)

we can transform eqn (24) into a set of Hilbert singular integral equations of the first type

(30)

where (h(a) should also satisfy the single-valued condition

(31)

By the use of the following substitutions

where Ck = (bk- ak)/2 and dk = (bk+ak)/2, eqn (30) can be further converted to a set of
standard Cauchy singular integral equations
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(33)

(34)

In eqn (33), L('1, 0 is a Fredhelm integral kernel without any singularity. According
to the general theory of singular integral equations (Muskhelishvili, 1953), we immediately
know that <Dk ('1) has inverse square root behavior at '1 = ± 1. Thus, setting

(35)

and applying the quadrature method developed by Erdogan and Gupta (1972), we obtain
a set of linear algebraic equations from eqns (33) and (34)

(36)

where '1; = cos (nj2N)(2j - I), ~, = cos nijN, i = I-N -I, k = l-n, and N is the number of
the discrete points of Fk ('1) between - I and + 1.

4. DYNAMIC STRESS INTENSITY FACTORS AND RIGID BODY MOTION OF THE
INCLUSION

The dynamic stress intensity factors (DSIFs) at the kth crack tips ak and bk are defined
as

(37a)

(37b)

(38)

By considering eqn (32), the principal part of !r=(ro, e) as e---+ at: and bt: [or !rc(ro, Ck~+dk )

as ~ ---+ - I - and I +] can easily be written as

(39)

Representing Fk ('1) in eqn (35) by a series in Chebyshev polynomials TJrf)
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ex

Fk (l1) = L Aik ) T/I1)
i~O

(40)

and substituting it into eqn (39) yields

where we have used the relation

(4Ia,b)

(42)

The amplitude of the total rigid body translation (RBT) of the inclusion may be
expressed, from eqns (6), (8) and (16), as

where W\O) may be found in Pao and Mow (1973), and L1l'vo may be derived, by the use of
eqns (23a), (32), (35) and Gauss-Chebyshev integration formula (Abramowitz and Stegun,
1965), as

(44)

5. SCATTERED FAR-FIELD PATTERN AND SCATTERING CROSS-SECTION

Using the asymptotic expansions of Hankel functions in the far field (Abramowitz and
Stegun, 1965), we may derive the following asymptotic expressions for the scattered far­
field displacement

(45)

where F(8,80 ) = PO\8,80 ) +FCl)(8,80), FCOl(8,80 ) is the scattered far-field pattern for a per­
fectly bonded inclusion, which can be calculated from the results of Pao and Mow (1973),
and F( I )(8,80) is that due to debonding, which follows from eqns (4), (16), (23a,b), (32),
(35) and Gauss--Chebyshev integration formula as

The total energy flux for the scattered field is the time average of the flux over any
surface S enclosing the inclusion (Pao and Mow, 1973)

<P') = ~ 1mf (WbO) +Wb1))*. (r~~J + r~;J) ds
s

(47)

where asterisk represents conjugation. Choosing S as a unit-length cylindrical surface with
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radius of infinitely large and using the expression of scattered far-field displacement given
by eqn (45), we have

(48)

The total scattering cross-section (SCS) is defined as (Pao and Mow, 1973)

where

<e )=~Im[(w(i))*'T(i)]=~1I K IAI 2
o 2 0 rzO 2 rO TO

(49)

(50)

is the time average of the incident flux.
In addition, following the two-dimensional optical theorem, (j(w) may be expressed as

(51)

which may be used as a check on the numerical computations.

6. THE LONG WAVELENGTH LIMIT

The long wavelength limit is also called the quasistatic limit, that is, the quasistatic
solution may be recovered from the dynamic solution as the incident wavelength greatly
exceeds the inclusion radius, i.e. KTQro « 1. In this limiting case, by considering the proper­
ties of Bessel functions with small argument (Abromowitz and Stegun, 1965), we may note
that M(m) of eqns (25a,b) become

M(O) = O(KTOrO); M(m) = - sgn(m)/lo +O(KTOrO)' m =f. 0

and therefore

Similarly, T(B) in eqn (24) becomes

T(B) = 2TO[cos(B-Bo) +0(1)]

(52a,b)

(53)

(54)

with To = i/loAKTo . Then eqn (24) reduces to a Hilbert singular integral equation of the
form

(55)

of which the solution satisfying eqn (21) and <Pk( ±coi) = 0 is (Lu, 1965)
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(56)

n (7 a,)-1/2(z b,)-1/2
X(z) =)J tan~ -tan2 tan:2 -tan2 '

z
lim tan-X(z) = I, X(8) = X+(8).
z~±n 2

(57)

In the following analysis we will only consider the case of one debond, i.e. n = I. Set
b1 = -at = rx, then eqn (56) becomes

(58)

where

181 > (X

181 < rx. (59)

The static stress intensity factors (SSIFs) are defined by analogy with eqns (37a,b).
From the results of Section 4, we have, at the crack tip 8 = + rx

(60)

Substitution of eqns (58)-(60) yields

(61)

Evaluating the integral in the above equation (see Appendix A), we obtain

(62)

which is the same form as eqn (53) of Yang and Norris (1991) if we set /12 ---> 00 in their
equation. Therefore one may say that the DSIF in the long wavelength limit reduces to the
SSIF for a uniform anti-plane stress To at infinity which is inclined at the angle 80'

As KTOrO---> 0, WIO) (Pao and Mow, 1973) behaves like

wIO) = A[I+o(1)]

and WII) follows from eqns (8), (16) (23a) and (58) as

(63)
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(64)

which means that for very low frequency, the presence of the debond only produces a
change of order KTOfO in the RBT.

The scattered far-field pattern for a perfectly bonded rigid inclusion becomes, in the
long wavelength limit,

(65)

The additional far-field pattern due to the debond follows from eqns (4), (16), (23a,b)
and (58) as

Evaluating the double integral (see Appendix B), we obtain

(67)

Here, for a rigid inclusion we have reobtained the quasistatic solution of Coussy (1982)
which was also discussed by Yang and Norris (1991) for an elastic inclusion. The SCS
calculated from eqns (65) and (67) for very low frequency does not exhibit a resonance
phenomenon as shown by Yang and Norris (1991).

7. THE SMALL DEBOND LIMIT

This limiting case has been considered by Yang and Norris (1991) for an elastic
inclusion with one debond. But they limited their analysis to the case of KTOfO = 0(1) or
KTOfO « 1, that is, the incident wavelength is comparable with or larger than the inclusion
radius and thus greatly exceeds the debond size. In this section, we reconsider this limiting
case by allowing for arbitrary values of incident wavelength. We also focus our attention
on one debond and assume b] = -al = IY. « 1. Under the substitutions' = IY.11, 8 = IY.~ and
<1>1(11) = ((Jl(IY.11), eqn (24) becomes

(68)

where M(O) = iIY.lloKTofoN(O)11 and M(m) = lloKTofom-1 N(m) with N(m) given by eqn (25).
Set s = mIY.. Then we have
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= 2i100

cC 1M(s/rt) sin [s(1] - ¢)] ds == I. (69)

Following the Debye's asymptotic expressions ofBessel functions (Abramowitz and Stegun,
1965), we have

Ifwe set v = s/rt and z = Krob/s with b = fort « 1, M(s/rt) may be evaluated as

M(s/rt) ~ - 110 {3(s)/s

where

{3(s) = J s2-(Kro b)2, lsi> Krob

= -iJ(Krob)2- s2, lsi < Krob

Therefore the integral (69) becomes

It is evident that as s ~ + Xl, S-I {3(s) ~ 1. By considering the relation

f
OO 1

sin [s(I]-¢)] ds =-v
o I]-t;

and setting

P(I], ¢) = 110 raJ [S-I {3(s) -1] sin [s(1] - ¢)] ds,
n Jo

eqn (68) becomes

(70)

(71)

(72)

(73)

(74)

(75)

I¢I < 1 (76)

which is the same form as (CI6) of Appendix C for a flat interface crack subjected to SH
waves. When KTOb = 0(1) or KTOb » 1 (therefore KTOfo» 1), i.e. the incident wavelength
is comparable with or smaller than the debond size and thus very smaller to the inclusion
radius, r(8) on the incident side is identical to that for a SH wave incident on a plane rigid
boundary. Therefore, one may say that as KTOfO» 1, a very small debond on the incident
side behaves just like a flat interface crack subjected to SH waves. This can be exlained by
pointing out that when Krofo » 1, the curved crack face appears to be a plane to the incident
wavelength.

When KTOb «1 (therefore KTOfO = 0(1) or KTOfo« 1), we have the limiting case
considered by Yang and Norris (1991). In this case, P(I], ¢) ~O and r(rt¢) = r(0)+0(rt2

),

thus eqn (76) becomes
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(77)

of which the solution satisfying the single-valued condition (34) is (Muskhelishvili, 1953)

(78)

and so

From eqn (22), the COD-Llw-may be expressed, under the substitutions x = foe, as

reO) 2 2 10Llw(x) = -(b -x ) f-

110

(79)

(80)

which is the same form as eqn (5.8) of Yang and Norris (1991) if we set 112 -400 in their
equation.

The DSIF at the tip e= + rJ. may be easily derived as

(81)

The results (80) and (81) are in fact the COD and SSIF of a flat interface crack between a
rigid half space and an elastic one subjected to static anti-plane shear loading reO) at infinity
and have been obtained by Yang and Norris (1991) for an elastic inclusion. It is not
suprising that the debond experiences a quasistatic COD and SIF if we keep in mind
that the incident wavelength in this case greatly exceeds the debond size even though
KTOfo = 0(1).

When KTOfo« 1, reO) ~ 2rocoseo with ro = illoAKTQ. Then eqn (81) becomes

which can also be obtained from eqn (62) by assuming rJ. « 1.
The additional RBT due to the small debond is

'A 2
(I) 1 rJ.

WI =~-h
n

where

(82)

(83)

(84)

with 8m = 1 (m = 0) or 2 (m > 0),
The additional scattered far-field pattern is

where

(85)
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x COSme
'I\' I: im -------------
L 'm (I)'
m~O (1) H o (KTOro) ~

H m (KTOrO) +2p K OOm
TOrO

(86)

Equations (83) and (85) show that the presence of a small debond produces changes
of order :x2 in the RBT and the far-field displacement. Note please, that eqns (85) and (86)
differ from eqns (5.10) and (5.12) of Yang and Norris (1991) in the leading terms of two
infinite series. In fact, their result is for a fixed rigid inclusion and may be obtained by
setting P -> 0 in eqn (86).

When KTOro « 1, 9 in eqn (86) behaves like

(87)

Therefore pl)(e,8o) becomes

(88)

which can also be obtained from eqn (67) by assuming:x « 1.

8. NUMERICAL RESULTS AND DISCUSSION

The SCS, DSIF and RBT have been computed for rigid/epoxy combination ofinclusion
and matrix. The shear modulus and mass density of epoxy may be found in Yang and
Norris (1991) and the mass density of the rigid inclusion is taken as PI = 2.55 g mm- 3

which is the same as that of glass. The computations were checked by (i) comparing the
numerical results of the DSIF in the long wavelength limit with the analytical results from
eqn (62); (ii) comparing the present results with those of Yang and Norris (1991) and
Norris and Yang (1991 b) for glass/epoxy combination; (iii) requiring that the optical
theorem was satisfied.

In solving eqn (36), we should choose N appropriately to ensure an adequate level of
accuracy and to avoid too much CPU time of the computer. To this end, we have computed
the DSIF in long wavelength limit by solving eqn (55) numerically with different values of
N and compared the results with the analytical solution eqn (62). They are listed in Table
1. It is shown that for a smaller debond N = 20-30 may give good accuracy but for a larger
debond N should be taken as 40-60. We will choose Nbased on these results in the following
calculations.

Table I. Comparison between the numerical and analytical results of the DSIF in the long wavelength limit

-KIII/iTOV/~ - Km/iTo'v/ro
x Analytical solution. Numerical solution of eqn (55)

(deg) eqn (62) N= 20 N= 30 N=40 N= 60

179~ 2.3057 x 10-' -1.9951 x 10-' 1.2718 x 10-' 1.9484 x 10 ' 2.2192 X 10-1

175 2.5755 x 10- 2 2.3336 x 10 2 2.5233 X 10-2 2.5585 X 10- 2 2.5716 X 10- 2

170' 7.2638 X 10 2 7.1036 X 10- 2 7.2301 x 10 2 7.2528 X 10- 2 7.2616 X 10-2

130° 7.3978 X 10- 1 7.3996 X 10- 1 7.3982 X 10- 1 7.3980 x 10 I 7.3978 X 10- 2

90 1.4142 1.4146 1.4143 1.4142 1.4142
60' 1.6119 1.6121 1.6119 1.6119 1.6119
10' 8.3025 x 10 I 8.3025 X 10- 1 8.3025 x 10 I 8.3025 X 10- 1 8.3025 X 10- 1

2" 3.7357 X 10- 1 3.7357 X 10- 1 3.7357 X 10- 1 3.7357 X 10- 1 3.7357 X 10- 1
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Fig. 2. The absolute-valued DSIF normalized with respect to the static value versus KTOYO for
rigid/epoxy with 7. = 179" and fill = 0°. The curve for glass/epoxy from Norris and Yang (l991b) is

shown for comparison.

The normalized DSIF and SCS for one debond versus KTOro in lower frequencies
(KTOr 0 = 0-1) are depicted in Figs 2 and 3, respectively. The results for glass/epoxy presented
by Yang and Norris are also shown for comparison. As we expected, the comparison shows
good agreement between the results of the rigid inclusion and those of a glass inclusion
because for the glass/epoxy combination fldflo = 23.4» I [see Yang and Norris (1991)],
that is, a glass inclusion may be viewed as a rigid one approximately. Indeed, we have
indicated before that the analysis and results of Yang and Norris for an elastic inclusion
reduce to those for a rigid inclusion with one debond presented in this paper if the shear
modulus of the elastic inclusion is infinitely large.

The resonance phenomenon shown in Figs 2 and 3 is called "low frequency resonance"
which was discussed in details by Yang and Norris and explicit asymptotic expressions of
the response near resonant frequency were derived by Norris and Yang (l991b) for an
elastic inclusion with one debond. Their analysis and results can be certainly extended to
the case ofa rigid inclusion. For instance, eqn (34) in Norris and Yang (1991b), which the

1.00.80.60.40.2

O~_......e.-;""'-~=----_--L.- __-I..-_---l

0.0

16

SHe] - R/E
- 21X

12 --- G/E

<:>
to..

" 8
b

4

KTOr O

Fig. 3. The SCS versus Kroyo for rigid/epoxy with rx = 17Y~. 130\ 65.5", 0" and fio = 0°. The curve
for glass/epoxy from Yang and Norris (1991) is shown for comparison.
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1.2

0.4

SH f2:s.. SH--\3))-
RIGID I EPOXY

Fig. 4. The resonant frequency of the DSrF versus:x for rigid/epoxy with 00 = 0° and 180". The
dashed curve follows from the asymptotic approximation of eqn (89).

resonant frequency satisfies, may be expressed, for a rigid inclusion with a single debond,
as

2 P I I [ (KToro)JIn- = 2 -8+2: y+ln --
c; (KTOro) 2

(89)

where c; = n -:x (:x is the half angular width of the debond), P = PO/PI and y is Euler's
constant. The leading-order approximation for c; « 1 is

(
2)1/2

KTOrO= JP In ~ (90)

which shows that the dependence of the resonant frequency upon the debond size a is
similar to that for an elastic inclusion. Figures 4-7 illustrate the numerically computed
resonant frequencies and resonant peak values of DSIF and SCS as functions of a. The
asymptotic results from eqn (89) are also shown in Fig. 4 for comparison. The agreement

1.6

G -- R/E
0 G/E

'"----""'t:: 0.8

~

0.4
SH-wave

0.0
60 0 80 0 100

0 ]20 0 ]40 0 ]60 0 180 0

a
Fig. 5. The resonant frequency of the SCS versus IX for rigid/epoxy. The circles are from Yang and

Norris (1991) for glass/epoxy.
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60 "

Fig. 6. The resonant peak value of the SCS versus ex for rigid/epoxy with lio = OC, 45', 90" and 1800.

between the numerical computation and the asymptotic theory is excellent for a large
debond (a> 150°). The resonances of both DSIF and SCS appear at the same frequency
for a larger debond, compare Fig. 4 with Fig. 5, but it is different for a smaller debond. In
Fig. 5 the results from Yang and Norris (1991) for glass/epoxy are also presented by circles.
These results are in good agreement with those for the rigid inclusion.

The effects of the incident angle 80 on the resonance are also shown in Figs 4-7. The
resonant frequency ofDSIF strongly depends upon 80 for a smaller debond (a < 130°), but
is almost independent of 80 for a larger debond (a ~ 130°). While the incident direction has
no influence on the resonant frequency ofSCS. The incident wave in 0°-or 180°-direction
causes stronger resonance in SCS than those in other directions, see Fig. 6. Furthermore,
the detailed computations show that the incident wave in direction 80 produces the same
SCS as that in direction (180 0

- 80) does. The influence of 80 on the resonant peak value of
DSIF is distinct, see Fig. 7 which illustrates the curves for 80 = 0° and 1800

• In general, one
may say that as the crack tip goes farther into the incident side of the interface, the DSIF
becomes higher. This is because: (i) the interface stress on the incident side is higher than
that in the shadow side (Pao and Mow, 1973); (ii) the stresses on the crack faces near the
tips dominate the DSIFs.

8

SHGSH- 2iX-
6

'".-.
• I=l RIGID / EPOXY

1:0<

"- 4
I=l

1:0<
~
c..

2

oOL:.o~-3:-'-O--::o:---61..-0~o....-:::~--L_--L_--..i.J
90 " 120 0 150 0 180 0

(J.

Fig. 7. The logarithmic-valued resonant peak of the normalized DSIF versus (I. for rigid/epoxy with
80 = OD and 180C

•
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Fig, 8, The absolute-valued DSIF normalized with ToA versus Krorofor rigid/epoxy with (J. = 130'
and 80 = - 25 and 255", The relevant static value is zero,

We may note from eqn (62) that the SSIF vanishes when 80 = (n: ±a)/2 for
Oc < iX < 180°. However, the relevant DSIF may reach a high value at a certain frequency,
see Fig. 8 which displays a special example foriX = 130°, Thus, the failure predictions based
solely upon static results may break down in situations where the inertial effect is not
negligible.

The ratio of the DSIF to the relevant SSIF at higher frequencies is plotted in Fig. 9
for a large debond of a = 175" with 80 = Dc and 1800

• The DSIF reduces to small values
immediately after reaching a sharp peak at a lower frequency. It is also shown that the
values for 80 = 0° remain higher than those for 80 = 1800

, which we have explained before.
Figure 10 illustrates the behavior of the DSIF at higher frequencies for a small debond of
iX = Y The approximate results in the small debond limit given by eqn (81) for 80 = 1800

are shown by a dashed curve. Although eqn (81) is derived under the assumption of
KTOrO = 0(1), the numerical calculations show that it is valid even when KTOrO= 6. The
dotted curve shown in Fig. lOis the result for a flat interface crack subjected to SH waves
given in Appendix C. It agrees well with that for a small debond at higher frequencies
(KTOro > 6). It should be noted that the DSIF for 80 = 0° reduces rapidly to very small
values at higher frequencies, that is, a small debond in the shadow side does not exhibit a

600r--.----------------,60

450

SH

e~
45

• IS

~ 300
i=l

i:<

150 I
I
\
\ ,

,,
',..180 0

' ....
~---

lX= 175 0

RIGID I EPOXY 30

15

00'----2'---1.4----'-8----.:::..::1"-=2=.--....16--"'=-=-==:l20 0

KyO' 0

Fig. 9. The absolute-valued nonnalized DSIF at high frequencies for rigid/epoxy with (J. = 175 and
80 = 0" and 180",
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o
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Fig. 10. The absolute-valued normalized DSIF for rigid/epoxy with a small debond (0: = 2') and
eo = OG, 180". The dotted curve is from Appendix C for a flat interface crack and the dashed curve

is from the asymptotic approximation of eqn (81) for the small debond limit.

dynamic behavior like a flat interface crack at higher frequencies. In conclusion, the
numerical results shown in Fig. 10 for a small debond support the analysis presented in
Section 7.

The normalized RBT for one debond versus Kroro is shown in Fig. 11, which also
demonstrates a low frequency resonance phenomenon like the SCS.

The influence of the mass density ratio PI!Po on the SCS and DSIF is displayed in Figs
12 and 13 for e1 = 175° and 80 = 0'. As PI!PO is increased, the resonance becomes more
pronounced and occurs at lower frequency, which could be seen clearly from the asymptotic
expression given by eqns (89) or (90). The asymptotic solution from eqn (89) for the
resonant frequency of the DSIF is compared with the numerical solution in Fig. 14 which
shows good agreement between these two solutions. In the limiting case where PI!Po ---> cYJ,

i.e. the inclusion is fixed, the DSIF and SCS become infinitely large as Kroro ---> 0, which
means that the resonant frequency approaches to zero. What this implies is that if the
inclusion were to be fixed stationary in space, it would have to exert infinite force on the
medium in order to be in static equilibrium. This is what one would expect physically.

sr----------------,

6

2

Ct = 179 0

SH~--0JJ
RIGID I EPOXY

Fig. 11. The absolute-valued RBT versus KTOro for rigid/epoxy with 0: = 179', 175°, 130°,655,0'
(dashed curve) and eo = 0'.
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Fig. 12. The SCS versus Kroro for different values of Pl/PO with a = 175" and eo = 0°. The dashed
curve is for a fixed rigid inclusion (i.e. Pl!PO = ee).

The SCS for two debonds of the same size ct = 65° is illustrated in Fig. 15 versus KTOro.
A distinct resonance also appears at a lower frequency in this case and it depends upon the
relative positions of the debonds evidently. As two debonds are closer to each other (i.e. f3
in the figure is decreased) the resonance becomes more pronounced and will very slowly
approach the corresponding case of one debond as f3 ~ 0°, compare the curves in Fig. 15
with that ofct = 1300 in Fig. 3.

The DSIF normalized with relevant SSIF for two debonds of the same size ct = 85° is
illustrated in Fig. 16 as a function of KTOro. Although the angular width of each bonding
region is only 10°, the resonance is not so strong as that shown in Fig. 9 for one debond.

In conclusion, the scattering problem of SH waves from a rigid inclusion with multiple
debonds along the interface is solved by using a method different from those of Yang and
Norris (1991) and Norris and Yang (l991b). The numerical results and the analytical
solutions in two limiting cases-the long wavelength limit and the small debond limit are
in good agreement with those of Yang and Norris. Therefore the method is proved to be

40 I FIXED
I

~eI
30 P j :Po=IO:1

~
I
I IX = 175 0

0 I\" RIGID INCLUSION

" 20 \f3
~ \

\

10 \
\

Fig. 13. The absolute-valued DS1F normalized with 'o~ versus Kroro for different values of PI/PO
with 70 = 175° and eo = 0". The dashed curve is for a fixed rigid inclusion (i.e. PI/PO = 00).
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Fig. 14. The resonant frequency of the DSIF versus PO/PI for (I. = 1750 and eo = 0°. The curve is
from the asymptotic approximation of eqn (89).
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Fig. 15. The SCS versus KTOro for rigid/epoxy with two debonds of the same size. The effect of their
relevant position (the angle fJ) is shown.
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Fig. 16. The absolute-valued normalized DSIF versus KTOro for rigid/epoxy with two debonds of
the same size.

successful. One advantage of the present method is that it can be easily applied to the in­
plane problem involving the oscillatory singular behavior of the stresses near the crack tips
which we will deal with in Part II of this two-part paper.
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APPENDIX A: EVALUATION OF INTEGRAL IN EQN (61)

We evaluate the integral

/
':x (
tan- +tan-

f
" / 2 2

1 = cos«(-lIo) / CI. ydC

-" \ tan 2. -tan~

( :x
Making the change of variable: u = tan 2/tan 2.' we may express eqn (AI) as

I = 4 tan ~ [I I cos 11 0 + I, tan ~ sin 11 0 ]

where
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(AI)

(A2)

1- u' tan' ~

f
' 2 du

I, = 0 ( , 'CI.)' /1 _ u2
'

I +u" tan" 2. 'v

We first evaluate I,. Set u = sin 1/, then

f
' 2u' du

I, = 0 ( , ''1)' y/~
I +u- tan~ 2.

(A3)

which can be further expressed, under the substitution I = tan 1/, as

(A4)

Considering that

f
'i {2

1,=2· dl=2cos'~

o (I + I' sec' ~)' 2

rae dl r" dl I
Jo I+ I' sec' ~ - J" (I + I' sec'~)' .

(AS)

we obtain

I (2n-3) f dl
-~~~~~~~-+ ---

2(n-l)( I +1' sec' ~)'-' 2(n-l) (I +1' sec' ~)'-I

(A6)

(A7)

(AS)

The integral I, may be expressed as

where the first integral, by making the change of variables from u to I as before, may be evaluated as

f' ~ - r'L dl = :rcos~.
o I + u' tan' 0: J 1- u' - J" I + I' sec' '1 2 2

2 2.
Therefore

n Jet.
I, = 2cOS 2.'

(A9)

(A 10)

(All)
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APPENDIX B: EVALUATION OF THE DOUBLE INTEGRAL IN EQN (66)

We evaluate the double integral

(BI)

where XC,,) is given by (59).
By considering the odevity of the integrand, eqn (B I) becomes

II = II, cos Ii cos Ii0 + II, sin Ii sin Ii0

where

(B2)

II, = L----;:==s=in="===f cos(

tan' ':': - tan'/'f -,
2 2

II, = L----;:==co=s:::,"===f sin(

tan'':':-tan 2 /'f -,
2 2

,,,
y sec--

22::X 2 ~ '"'tan -2 -tan 2 y d£, dry.
£, ry

tan:2 -tan:2

(B3)

(B4)

We first evaluate II,. By making an exchange of the integral order, II, can be rewritten as

where

Make the change of variables from '7 to t as we have done in Appendix A. Then eqn (B6) becomes

(B5)

(B6)

y y

2 ,c 2'21,- cos-"2 Sill :2

+ r (Y ),.., a ') s ') ') ~ IX
1+t~sec2- tan--+t- tan---tan'-

2 2 2 2

dt (B7)

which can be evaluated, by using eqn (A6), as

Therefore

(B8)

(B9)

The second integral in eqn (B9) is equal to zero and the first one, by making the change of variables from ( to t
as before, may be expressed as
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(BlO)

Making use of eqns (A6) and (A7), we have

(Bll)

Integral 112 may also be evaluated similarly. We omit the detailed analysis and only give the final result which
is

II, = -2n2 sin4~.

APPENDIX C: SCATTERING OF SH WAVES BY A FLAT INTERFACE CRACK

(BI2)

The scattering of SH waves by a flat interface crack between two elastic half spaces has been studied by
Bostrom (1987). He obtained an integral equation in terms of the COD and presented the numerical results for
the far-field amplitude and scattered energy. Here, we consider an interface crack between a rigid half space and
an elastic one by a different method. A Cauchy singular integral equation is derived with the dislocation density
function as the unknown and a formula for calculating the DSIF is given.

Consider the problem shown in Fig. C I. A flat crack with length 2b lies on the interface between a rigid half
space and an elastic one. An incident SH wave propagates in the 80 direction. Take Cartesian coordinates (x, y)
as shown, with the origin at the centre of the crack. All motion is time harmonic with frequency w, and the term
e-,wl will be omitted. Decomposed the total out-of-plane displacement in the elastic half space as

(Cl)

where w~) represents the incident wave with the form of eqn (I) which may be rewritten as

(C2)

w~) represents the reflected wave from a plane rigid boundary which is (Miklowitz, 1987)

(C3)

and w6') is the scattered field by the interface crack, which satisfies the Helmholtz equation

(C4)

with V' = (8' /8x') + (a 2/ay2). The solution of eqn (C4) in the form of Fourier representation is

(C5)

where

y

rigid

-b b x

0

~eo elastic

Fig. C I. A flat interface crack between a rigid half space and an elastic one subjected to an incident
SH wave.
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f3 = Js' ~KiTJ' lsi> Kru

= ~iJK}{)-s', lsi < K TO '

(C6)

On the interface, w~') = °for Ixl > b or w~) = -~w(x) (the COD of the crack) for Ixl < b. This gives

f
~ f(s) e"X ds = {o, Ixl > b

-If -~w(x), Ixl < b.

Inverting the Fourier transform in eqn (C7), we have

I fhf(s) = - ~w(u) e- i
'" duo

2n -h

Along the cracked part of the interface the traction vanishes and thus

(C7)

(C8)

y = 0, Ixl < b (C9)

which gives with eqns (CS) and (C8)

- /1() f~ .f3 e,g fi> ~w(u) e "'" du ds = ~ r(x), Ixl < b
2n -x -h

where

_ (awI,i) aWl,'))
r(x) - /10 a, + a. .

-J J r=O

(CIO)

Equation (CIO) is the integral equations for the COD which coincides with eqn (15) of Bostrom (1987) if we
set J1.1 --> Cf) in his equation. We further introduce a dislocation density function

which means

a
((l(x) = a)~w) (CII)

~W(x) = fh ({l(U) duo (C12)

Obviously, fh ((l(X) dx = 0. Substituting eqn (C12) into eqn (CIO) and using the by-part interation yield

Ixl < b. (C13)

Ifwe set

~OfX ',. J1.°f~P(u, x) = 2n [s- I f3 - sgn(s)] e"lx-u, ds = -; (s- I f3 - I) sin [s(u - x)] ds
-~ (I

and use the relation (74), eqn (C13) becomes

(C14)

/1() fh ({l(u) fh
- . --du+ ({l(u)P(u,x)du = -T(X),
n h u-x -h

Ixl < b (CIS)

which, by using the substitutions u = bIJ, x = bi; and <1>(IJ) = ((l(bIJ), can be rewritten as

where

P(IJ, i;) = J1.o rx

[t- I P(t) - IJsin [t(IJ - OJ dt
n Jo

with P = J t' - (KTOb)' for It I > Krob or -iJ(Kru b)2 ~ t' for It I < Krub.
In addition, <1>(() should also satisfy the single-valued condition

(C16)

(C17)
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f, <t>(Od~ = O.

2815

(CI8)

Equation (CI6) is a standard Cauchy singular integral equation of the first kind and can be solved numerically
by the method we outlined in Section 3. The DSIFs are defined as

(CI9)

where TJX) is the shear stress along the interface beyond the crack. By following the analysis similar to that in
Section 4, it can be easily derived that

Km ± = /lojbF(± I)

where F(~) = <t>(~)yll-(. The corresponding SSIFs are

with To = i/loAK,o.

(C20)

(C21)


